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Abstract

Purpose — This paper seeks to construct a model for inventory management for multiple periods.
The model considers not only the usual parameters, but also price quantity discount, storage and
batch size constraints.

Design/methodology/approach — Mixed 0-1 integer programming is applied to solve the
multi-period inventory problem and to determine an appropriate inventory level for each period.
The total cost of materials in the system is minimized and the optimal purchase amount in each period
is determined.

Findings — The proposed model is applied in colour filter inventory management in thin film
transistor-liquid crystal display (TFT-LCD) manufacturing because colour filter replenishment has the
characteristics of price quantity discount, large product size, batch-sized purchase and forbidden
shortage in the plant. Sensitivity analysis of major parameters of the model is also performed to depict
the effects of these parameters on the solutions.

Practical implications — The proposed model can be tailored and applied to other inventory
management problems.

Originality/value — Although many mathematical models are available for inventory management,
this study considers some special characteristics that might be present in real practice. TFT-LCD
manufacturing is one of the most prosperous industries in Taiwan, and colour-filter
inventory management is essential for TFT-LCD manufacturers for achieving competitive edge.
The proposed model in this study can be applied to fulfil the goal.

Keywords Cybernetics, Inventory based ordering systems, Batch size, Discounts
Paper type Research paper

1. Introduction

A large number of mathematical models have been developed for inventory
management, such as linear programming, nonlinear programming, dynamic
programming, geometric programming, gradient-based nonlinear programming and
fuzzy geometric programming. Mixed integer programming has also been adopted to
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solve the inventory problem, and some recent researches are reviewed here. Kazan et al.
(2000) formulated a mixed integer linear programming model to identify less nervous
production schedules in a rolling horizon basis. In a production system that is not
flexible to changes in pre-determined production volume, the proposed model is
preferable to generate new schedules. Hsieh (2001) presented a 0-1 linear programming
approach for minimizing total average cycle stock with the constraints of a limited total
number of replenishments per unit time and a restricted set of possible intervals. The
relaxation of the 0-1 problem generated a more efficient and effective lower bound, and
the solution was used to propose a simple and efficient heuristic. Chang and Chang
(2001) developed a mixed integer optimization model for solving the inventory problem
with variable lead time, crashing cost and price-quantity discount, and derived a linear
programming relaxation based on piecewise linearization techniques. Tarim and
Kingsman (2004) proposed a mixed integer programming formulation to solve the
stochastic dynamic production/inventory lot-sizing problem with service-level
constraints. The optimal solution could minimize the total expected inventory
holding, ordering and direct item costs during the planning horizon. Tang et al. (2005)
developed a nonlinear 0-1 mixed integer programming model and a Lagrange relaxation
decomposition method for synchronized production and transportation planning in a
production distribution network. A synchronized schedule of production and
transportation could be determined, and the minimum total costs over the planning
horizon could be achieved. Wang and Sarker (2005) modeled an assembly — type supply
chain system as a mixed integer nonlinear programming problem. Branch-and-bound
method was used to solve small size problems, while a heuristic was developed to divide
a large size problem into several small size problems and each small problem was solved
individually. Wang and Sarker (2006) further developed a mixed integer nonlinear
programming model to solve a multi-stage supply chain system that operates under a
just-in-time delivery policy. Tarim and Kingsman (2006) further studied the single-item,
non-stationary stochastic demand inventory control problem under the non-stationary
(R, S) policy. The nonlinear cost function of the stochastic lot-sizing problem was first
solved by a piecewise linear approximation, and a certainty equivalent mixed integer
linear programming model was developed next for computing policy parameters. Chang
(2006) proposed an exact acquisition policy using mixed integer optimization
approaches for solving the single-item multi-supplier problems. Based on Chang and
Chang (2001), which did not consider the single item multi-supplier situations, Chang
et al. (2006) further developed a mixed integer approach for solving the single item
multi-supplier problem with variable lead-time, price quantity discount and resource
constraints. Kang (2006) developed a dynamic programming model and a mixed 0-1
linear programming model to solve a control wafers replenishment problem with
inventory deterioration. da Silva et al. (2006) introduced a multiple criteria mixed integer
linear programming model to solve the aggregate production planning problem with
three performance criteria: maximizing profit, minimizing late orders and minimizing
work force level changes. A decision support system based on the model was further
developed to facilitate the application in real practice.

Quantity discounts is an important issue in inventory management. With quantity
discounts, the purchase price from the suppliers is reduced if a large order is placed.
Usually, there are two major types of quantity discounts: all-units discount and
incremental discount (Cha and Moon, 2005). In the all-units discount, the discounted
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price is applied to all units beginning with the first unit, if the quantity purchased
belongs to a specified quantity level predetermined by the supplier. There are often a
number of price breaks, and the unit discounted price decreases as the quantity level
increases. In the incremental discount, the discounted price is only applied to those units
mside the price break quantity. Therefore, different prices are applied to the units
belonging to different price breaks. Quantity discounts have been considered in many
inventory models, and some recent researches are Chang and Chang (2001),
Papachristos and Skouri (2003), Yang (2004), Chen and Chen (2005), Wang (2005),
Chang (2006), Chang et al. (2006) and Li and Liu (2006).

In previous researches of inventory problem, storage space and batch size were not
often considered even though they are important issues that should not be ignored.
Kanyalkar and Adil (2005) and Mandal et al. (2006) constructed inventory models with
the consideration of constrained storage space. If the size of a piece of material is
relatively large and storage capacity in a plant is limited, a limited quantity of
materials can be stored in the plant. In addition, it is possible that the materials can
only be purchased in a multiple of a fixed-sized batch; that is, a split batch is not
allowed. For example, if the batch size is 100, the number of materials purchased each
time must be an integer multiple of 100, e.g. 100, 200, and 300, etc. With these special
characteristics, we will formulate the inventory replenishment problem with the
constraints of quantity discounts, space and batch size by a mixed 0-1 integer
programming model.

Because it is easier to solve a linear problem, the following proposition is required to
transform a nonlinear integer problem into a mix integer problem (Chang, 2006).

Proposition 1.  Assume that the @); is the purchase quantity, and B is the batch size.
Q; is an integer multiple of B, and the calculation is as follows:

Min QiZBXFZ' (1)
v

st F; = Zzﬂ ) 2)
v=1

where, F; is an integer variable, and vy, is a 0-1 variables.

Proof. The objective function in equation (1) can be represented as
B X (yo+ 2y1 + 4y, + ), where B is an integer variable and y, v =1, 2, ... V) is
a 0-1 variable. The equation is linearized by referring to Chang (2006). The linearization
strategy can be examined by the term B X y, as an example. The term B X y, is
linearized by the following inequalities constraints:

O (o —-DM+B=7=B5,
(i) 0 = 7= yM,
where, M is a big value, 71s a continuous variable, v, is a binary variable, and B is an
integer variable. The two cases are as follows:
(1) Ifyo=0,then —M +B = 7= B from (i), 0 = 7= 0 from (ii). Thus, 7= 0.
2 Ifyo=1,thenB = 7= Bfrom (@), 0= 7= M from (ii). Thus, 7= B.

As a result, the inequalities constraints (i) and (i1) can ensure @; be an integer multiple
of B.



The purpose of this research is to construct a mixed 0-1 integer programming model
for inventory management under the production control of a pulling system and the
consideration of quantity discount, storage and batch size constraints. The remaining
of this paper is organized as follows. Section 2 describes the problem under
consideration and the assumptions. Section 3 is the construction of the algorithms. In
Section 4, a case study of colour filter inventory management in thin film
transistor-liquid crystal display (TFT-LCD) manufacturing is presented, and
sensitivity analysis of major parameters of the model is performed to depict the
effects of these parameters on the solutions. Some conclusion remarks are made in the
last section.

2. Problem description and assumptions
In order to simplify the complexity of the environment, we shall restrict the
investigation with the following assumptions:

+ The plant is make-to-stock (MTS), the demand rate for the material is reasonably
constant in a period. However, it can be different in different periods.

+ Each period can only place at most one order.

+ The replenishment lead time is of known duration, and the entire order quantity
is delivered at the same time in the beginning of a period.

* The order quantity must be a multiple of a fixed-sized batch. No split-batch is
allowed. Shortages are not allowed.

+ The price of each unit is dependent on the order quantity. All-units discount
schedule is considered.

+ Storage space is limited.

+ The inventory holding cost for each unit is known and constant, independent of
the price of each unit.

+ Planning horizon is finite and known. In the planning horizon, there are n
periods, and the duration of each period is the same.

* The initial inventory level (X7) is zero.
All the required notations in this paper are defined as below.
2.1 Indices

¢ = planning period ¢ =1, 2, ..., n).

k = price break (k=1, 2, ..., k).

v; = integer number for calculating number of batches in period: (v; = 1,2, ..., V;).

2.2 Parameters

B = batch size of materials, and the order quantity must be an integer multiple
of B.

D; = demand at period .
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Figure 1.
Graphical representation
of inventory system

H = inventory holding cost, per unit per period.

I({;—1) = beginning usable inventory level in period ¢ at time #_;, and
i) =X + Z; X Qs

M = a large number.

0 = ordering cost per replenishment.

P = unit purchase cost.

D = unit purchase cost with price break .

qQr = the upper bound quantity of price break k.

S = storage space (volume) available at the plant.

U; = a binary variable, set equal to 1 if materials are purchased with price
break % in period 7, and 0 if no purchase is made with price break % in
period 7.

Y, = a binary variable for calculating the number of batches in period i.

2.3 Decision variables

P(Q;) = purchase cost for one unit based on the discount schedule with the order

quantity @;.
Q; = purchase quantity in period .
TC = total cost of materials in a planning horizon.
X; = beginning inventory level in period i.
Z; = a binary variable, set equal to 1 if a purchase is made in period 7, and 0 if

no purchase is made in period 7.

Figure 1 is the graphical representation of multi-period inventory system. The
beginning inventory level in period ¢ (X;) is equal to the beginning inventory level in
period 7 — 1 (X;_ 1) plus the purchase amount in period 7 — 1 (Z;—1 X €;—1) and minus

Inventory Level

A () = X+ ZxQ = (X 141X Q =Dy P+ ZxQ

\j

t.
-2
I period i—1 periodi period n

ti—l ti tml




the demand in period 7 — 1 (D;_ 7). The beginning usable amount in period ¢ (/(f;_ 1)) is
equal to the beginning inventory level in period 7 (X;) plus the purchase amount in
period 7 (Z; X Q;), where Z; represents whether a purchase is made in period 7 (1 if a
purchase is made, and 0 if no purchase is made).

The objective of the proposed model is to minimize the total cost of materials in the
system and to determine the optimal inventory level in each period. The objective
function is to minimize the total cost, which includes ordering cost, holding cost and
purchase cost in a planning horizon, and it is:

Total cost = total ordering cost + total holding cost + total purchase cost (3)

Equation (4) calculates the total ordering cost for the system, where O is the ordering
cost per time and Z; represents whether a purchase is made in period ¢ (1 if a purchase is
made, and 0 if no purchase is made).

Total ordering cost = O X ZZZ' 4)
i=1

The beginning inventory in a period is equal to the beginning inventory level in the
previous period plus the purchase quantity in the previous period minus the demand in
the previous period as shown in equation (5). The holding cost for period 7 is equal to
the holding cost of the inventory demanded for period 7 (H/2 X D)) plus the holding
cost of the beginning inventory level in period + 1 for period . The total holding cost
is the summation of the holding cost for each period, as in equation (6):

Beginning inventory in this period = beginning inventory in previous period
+ purchase quantity in the previous period
— demand in the previous period

®)

Total holding cost= Z <§xDi +HxX i+1) (6)
i=1

The total purchase cost is obtained by equation (7), where P();) is the unit purchase
cost based on the discount schedule with the order quantity @;.

n
Total purchase cost = Z (P(Q)XQiXZ;) (1)
i=1

3. Mixed 0-1 integer programming model for colour filter inventory
problem in TFT-LCD manufacturing

In this section, we propose a mixed 0-1 integer programming model to solve the
multi-period inventory problem and to determine an appropriate inventory level for
each period. In this paper, we assume that a production planner’s objective is to
minimize the total cost of materials in the system and to determine the optimal
purchase amount in each period. In each period, sufficient materials must be supplied
for use in time, and shortages are not allowed.
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The mixed 0-1 integer programming model can be formulated as follows:

n
Minimize TC = Z (OXZZ‘ +EXDZ‘ + HX X1+ P(Q)XQ; XZi> 8

=1 2
Subject to X1 =X;+7Z;XQ; —D;, i=1,2,....,n 9
Xi+Z;x@Q =S, =12, ....n 10)
Vi
Q=Bx» 2ly, i=12 .. (11)
v=1

G +MXUp—1) =60 <g+Mx1 - Up),

12)
1=1,2,...,nmand k=1,2, ...,k
Y Un=1 i=12 ....n (13)
=1
P@) =Y peXUp, i=12,...,n (14)
k=1
Z;,€10,1}, i=1,2,...,n (15)
W EWOL, u=12 ...V (16)
Upre{0,1}, =1,2,...,nand k=1,2,...,k a7
and all variables are nonnegative. (18)

The objective function, equation (8), is to minimize the total cost, which includes the
ordering cost, holding cost and purchase cost in a planning horizon. These costs are
explained before in equations (4), (6) and (7). The operative constraints are as follows.
In constraint (9), the beginning inventory of a period, X;, 1, is equal to the beginning
inventory level in the previous period, X, plus the purchase quantity in the previous
period, Z; X €;, minus the demand in the previous period, D,. Constraint (10) ensures
that the beginning usable inventory must be less than or equal to the storage space S.
Constraint (11) sets the purchase quantity to be an integer multiple of batch size B.
Constraint (12) sets the purchase quantity between a lower bound quantity ¢;— ; and an
upper bound quantity ¢, in a price break k, where M is a large number. Constraint (13)
makes sure that materials can only be purchased with one single price break % in each
period i. Constraint (14) determines the purchase cost per unit, P(@);), under the discount
schedule based on the total quantity purchased in period . Constraint (15) lets



a purchase is either made of not made in each period. Constraint (16) is a binary
variable for calculating the number of batches in period 7. Constraint (17) is a binary
variable for determining the price break % applied to the purchase quantity in period 7.
Special cases will be studied for the model, with combinations of limited or
unlimited storage space, different batch sizes, regular or discounted purchase costs.

4. Numerical example

In order to illustrate the effectiveness of the proposed mixed 0-1 integer programming
model, a case study of colour filter inventory management in a TFT-LCD manufacturer
is presented. The software LINGO is used to implement the model.

4.1 TFT-LCD manufacturing and colour filter inventory management

The progress in high technology has led to a widely use of TFT-LCD. Because of their
low weight, slender profile, low-power consumption, high resolution, high brightness
and low-radiance advantages, TFT-LCDs have been used in a wide range from
portable appliances to notebook and desktop monitors and even to large screen digital
televisions. The size of TET-LCD keeps increasing as the manufacturing technology of
TFT-LCD evolves, and a larger TFT-LCD allows a larger display application and an
improved productivity. However, as the size of TFT-LCD increases, the size of
TFT-array substrates and colour filter substrates has to increase simultaneously,
leading to a more complicated inventory problem of large-sized substrates.

There are five major processes in the manufacturing of TFT-LCD: TFT array
fabrication, colour filter (BM) fabrication, colour filter (RGB) fabrication, cell assembly
and module assembly. The TFT array fabrication process is very similar to that used to
fabricate semi-conductor devices. The steps, including cleaning, deposition of thin films,
photolithography, and wet and dry etching of the thin films, are all very similar. The
glass substrate must be processed five to seven times through cleaning, inspection, film
deposition, resist coating, exposure, developing, etching and resist strip (Lin et al., 2004).

A LCD panel consists of an array substrate and a colour filter substrate joined
together. While array substrates are manufactured in house, the majority of colour
filter substrates must be acquired from colour filter manufacturers. There are two
colour filter fabrication processes in a colour filter plant: colour filter (BM) fabrication
and colour filter (RGB) fabrication.

In the cell assembly process, TFT-array substrates and colour filters are assembled.
In the process, an LCD panel is made by assembling the two substrates together and
filling the space between them with liquid crystal. The assembled substrates are
scribed using a cutting wheel and separated into individual cells. Finally, each cell will
pass through grinding, lamination and test, and the final product is called a LCD panel.

The last step in the production of TFT-LCD panels is the module assembly process,
where TFT-LCD panels are finished by connecting additional components, such as
backlight units, light polarizing films, driver ICs, and product cases. After the module
production process, TFT-LCD panels can be sold to downstream manufacturers, where
they are installed in LCD TVs, monitors, or notebook computers, etc.

The manufacturing cycle time of TFT-LCD in TFT-LCD manufacturers’ part is
about 9-13 days, which include 5-7 days for array process, 3-5 days for cell assembly
process and one day for module assembly process (Wu ef al, 2006). Because the first
two processes, the front-end processes, are highly automated, comprise the major
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Table 1.
Demand of each period in
a planning horizon

portion, e.g. 90 per cent, of the total investment, and have the longest cycle times, a
good production planning and equipment utilization of the two processes are essential
to reduce the cycle time, increase the throughput, and strengthen the competitive edge
of the companies. As a result, TFT-LCD manufacturers usually adopt the MTS
strategy for the first two processes and the assembly-to-order strategy for the module
assembly process (Lin et al., 2004).

Colour filter inventory management is very important in the fabrication of
TFT-LCD panels. Colour filters substrates are one of the most expensive raw materials
and are usually purchased from colour filter manufacturers. Thus, sufficient amount of
colour filters must be available in the plant to maintain a smooth production flow. As
the generation of TFT-LCD increases, the size and the unit cost of colour filters
increases, and the storage of these large-sized colour filters becomes more difficult. To
summarize, in order to reduce cost and to ensure product availability, the inventory
management of colour filters is especially important in TFT-LCD manufacturing.

4.2 Basic input information
Actual data are taken from an anonymous TFT-LCD manufacturer located on the
Science-Based Industrial Park in Hsinchu, Taiwan. The manufacturer has different
plants for TFT array fabrication, cell assembly and module assembly. After the TFT
array fabrication, TFT-array substrates are moved to the cell plant to assemble with
colour filter substrates, which are purchased from a colour filter manufacturer.
Therefore, adequate number of colour filters must be purchased and stored in the plant.
The objective of the model is to minimize the total cost of colour filters in the system
and to determine the optimal purchase amount of colour filters in each period.

Based on an interview with the management of the TFT-LCD fab, we define each
planning horizon to be ten days and each period to be one day. Thus, each planning
horizon contains ten periods. In addition, we set ordering cost per replenishment (O) to
be $120 and unit holding cost per period (H), which includes the handling cost, storage
cost and capital cost, to be $0.1. Table I shows the demand (D;) at each period i. Table II
shows the discount schedule under different purchased quantity. For instance, if the
purchased quantity in a period is between 2,001 and 3,000 units, the price for each unit,
starting from the first unit, is $39.

Eight special cases are examined here, as shown in Table I1I. Each case may be varied
in its storage space (limited or unlimited), batch size (B = 1,100 or 1,000) and purchase
price (regular or discounted). For example, in Case 1, the maximum storage space is

i 1 2 3 4 5 6 7 8 9 10

D; 610 350 410 1,080 1,778 661 1,524 1,025 336 234

Table II.
Discount schedule

Price break (%) Purchased quantity () Price (P)
1 0-1,000 40

2 1,001-2,000 39.5

3 2,001-3,000 39

4 3,001 or more 38.8




Case Storage space (S) Batch size (B) Unit purchase cost (P)
1 3,000 1,000 Fixed at $40
2 M 1,000 Fixed at $40
3 M 100 Fixed at $40
4 M 1 Fixed at $40
5 3,000 1,000 By discount schedule
6 M 1,000 By discount schedule
7 M 100 By discount schedule
8 M 1 By discount schedule

Integer

programming for
inventory model

75

Table III.
Data for the eight cases

3,000 units of colour filters. The firm can only purchase an order with an integer multiple
of the batch size of 1,000, for example 1,000, 2,000, and 3,000, etc. The unit purchase price
is fixed at $40 no matter how many units are purchased a time; that is, no discount is
given. Use Case 7 as another example, there is no limit on the storage space since M is a
large number. An order can be 100, 200, and 300, etc. Discounted price is given to all units
based on the total quantity purchased at a time using the discount schedule in Table I If
30 batches are purchased, the total number of units is 3,000. According to Table II, each
unit costs $39, and the total purchase cost is $117,000 (3,000 x $39).

4.3 Experimental result and analysis

Based on the proposed mixed 0-1 integer programming model using LINGO, the results
of the first four cases with a fixed price are obtained and summarized in Table IV, and
the results of the other four cases with the prices determined by the discount schedule
are shown in Table V:

* Case 1. The maximum storage space is 3,000 units. The units purchased in each
order must be a multiple of the batch size, 1,000 units. The price is fixed at $40.
The beginning inventory in period 1 (X7) is zero, and a purchase is made for the
period (Z; = 1) with a purchase quantity (€;) of 1,000 units, which are one batch.

Cases
1 2 3 4

S = 3,000 S=M? S=M S=M

B=1,000 B = 1,000 B =100 B=1
Period variables P=140 P=40 P=40 P=140
(X, 21, @) (0, 1, 1,000) 0, 1, 1,000) (0, 1, 1,400) ©, 1, 1,370)
(Xo, Zo, Qo) (390, 0, 0) (390, 0, 0) (790, 0, 0) (760, 0, 0)
(X3, Z3, Q) (40, 1, 2,000) (40, 1, 2,000) (440, 0, 0) (410, 0, 0)
Xy, Zy, Qo) (1,630, 0, 0) (1,630, 0,0) (30, 1, 1,100) (0, 1, 1,080)
(X5, Z5, @s) (550, 1, 2,000) (550, 1, 2,000) (50, 1, 2,400) 0, 1, 2,439)
(Xs, Zs, Qo) (772, 0, 0) (772, 0, 0) (672, 0, 0) (661, 0, 0)
(X7, Z7, @) (111, 1, 2,000) (111, 1, 3,000) 11, 1, 1,600) 0,1, 1,524)
(Xg, Zg, Q) (587, 1, 1,000) (1,587, 0, 0) (87, 1, 1,600) ©, 1, 1,595)
(X, Zo, Qo) (562, 0, 0) (562, 0, 0) (662, 0, 0) (570, 0, 0)
(Xi0, Z10, Q10) (226, 1, 1,000) (226, 1, 1,000) (326, 0, 0) (234, 0, 0)
TC ($) 361,706.4 361,686.4 325,316.4 321,583.9

Note: M is a large number

Table IV.
Results of the four cases
with P fixed




09221¢ YORroIE 797188 ¥'99%°'28¢ ®) oL
(00 ‘7€2) (00 ‘9z¢e) (00 ‘922’1 (00 ‘922'T) 01y 017 Oy)
00 ‘0L9) (00 ‘299) (00 ‘295T) (0 ‘0 ‘295'T) 0 7 ¢x)
(0 ‘0 ‘s65°T) (002891 (0 ‘0 ‘2852 (000 ‘T “289) GO %7 %x)
(800° ‘T “TTD) (000°€ ‘T ‘112 (0007 ‘T “TTD) (000 ‘T “TT1) CORADY)
00 ‘zLL) 0029 (00 2L 00 ‘gLL) CO 7 9X)
(00 ‘055'2) (00 ‘059%) (0002 ‘T ‘059) (0002 ‘T ‘059) GO “Z “x)
(000°€ ‘T ‘0£9) (000°€ ‘T ‘0£2) ‘0 0891 (00 ‘0£9'T) (O 77 7X)
0 ‘0 ‘0v0'T) 00 ‘oPI'D 0 ‘0 ‘0702 0 ‘0 ‘0702 0O 7 °x)
(0 ‘0 ‘06£'T) (0 ‘0 ‘06%'T) (00 ‘06£2) (0 ‘0 ‘06£2) 0 7 “x)
(0002 ‘T “0) (0012 ‘1 °0) (000 ‘T ‘0) (000°¢ ‘1 ‘0) ('O 7 x)
I d1qe], Woxy 11 d1qB], WOy :(f 11 d[qe], Woy ;g I d[qe] Woy ;g SI[BLIBA POLID]
1=9 0r=9 000T=¢ 000T=¢
W=S W=Ss W=S§ 000€ =S
8 L 9 G
sase))
%
S
25
o 3
= 5
52 3
.
o 6 n =
&S ~ S&E




Because the demand for period 1 (D;) is 610 units, the beginning inventory in
period 2 (X5) becomes 390 units, which can meet the demand for period 2, 350
units. No purchase is necessary for period 2. However, a purchase is made for
period 3 with a quantity of 2,000 units (&-), and the beginning usable inventory
for period 3, I(t3), becomes 2,040 (390 — 350 + 2,000) units, an amount less than
the maximum storage space of 3,000 units. Because the storage space is limited
in this case, colour filters are purchased six times in a planning horizon,
compared to five times each for Cases 2-4. The total cost for a planning horizon is
$361,706.4.

Case 2. The parameters for this case are very similar to those for Case 1, except
that there is no limit for storage space (S = M). The replenishment decisions are
identical for the first six periods and the last two periods under the two cases,
and the differences between the two cases are in period 7 and 8. A purchase is
made for period 7 under both cases; however, the purchase quantity () is 3,000
for Case 2 but 2,000 for Case 1. The reason is because Case 2 has no storage space
limit but Case 1 has a maximum storage space of 3,000 units. The beginning
inventory in period 7 is 111 units, and only 2,000 units can be purchased under
Case 1 to have a beginning usable inventory, 1(f;), of 2,111 units. If 3,000 units are
purchased, /(t;) will become 3,111 units, an amount exceeds the storage space. As
a result, with no storage space constraint, the total cost for a planning horizon
under Case 2, $361,686.4, is lower than that under Case 1.

Case 3. The condition under Case 3 is better than that under Case 2. While Case 2
has a batch size of 1,000 units, Case 3 has a batch size of 100 units. Therefore,
Case 3 has purchase quantities of 1,400, 1,100, 2,400 and 1,600 units, which are
integer multiples of 100 units. With a looser constraint, Case 3 performs much
better than Case 2, with a total cost of $325,316.4.

Case 4. With a batch size of one unit only and an unlimited storage space, this
case performs the best among the first four cases, and the total cost for a
planning horizon is $321,583.9.

Case 5. The parameters in this case are identical to those in Case 1, except that
the purchase prices are determined by the discount schedule here. Unlike in Case
1 in which six purchases are made, Case 5 has only four purchases: 3,000 units in
period 1 and 2,000 units each in period 5, 7 and 8. The reason for fewer purchases
obviously is to gain purchase quantity discounts. With 3,000 units or 2,000 units
for a single purchase, the unit discounted price is, respectively, $39 and $39.5,
as shown in Table II. Because the unit holding cost is $0.1 per period, a small
number in compared with the discount savings of $1 or 0.5 per unit, larger
quantity orders are tend to be made. With purchase quantity discount, the total
cost for a planning horizon is $352,466.4.

Case 6. The replenishment decisions for the first six periods are the same as
under Case 5. Because there is no storage limit here, 4,000 units are purchased in
period 7, in contrast with 2,000 units each in period 7 and 8 under Case 5. As a
result, only three purchases are made under Case 6, and the total cost for a
planning horizon is $351,746.4.
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* Case 7. With a looser batch size constraint than Cases 6 and 7 also makes three
purchases but with different quantity and periods, and a lower total cost of
$316,446.4 is achieved.

* Case 8. With a batch size of one unit, an unlimited storage space, and purchase
quantity discounts, this case performs the best among all eight cases, and the
total cost for a planning horizon is $312,760.

A sensitivity analysis is performed for Case 8 (S= M, B=1, P is with discount).
Consider the situation in which only O or H changes by a fixed proportion (0.1, 0.5, 1.5
and 3) of the parameter, while the other parameters remain unchanged. Sensitivity
measures are calculated for O = 360, 180, 60, 12 and H = 0.3, 0.15, 0.05, 0.01, and the
results are summarized in Table VL

Based on the sensitivity analysis, we can infer the following:

+ An increase in ordering cost (O) causes increases in total ordering cost and may
lead to a decrease in number of orders. For O =12, 60, 120 and 180, the
replenishment decisions are the same; that is, three purchases are made in a
planning horizon (@ = 2,000, @, = 3,000, @; = 3,008). The increase in total cost
is due to the increase in total ordering cost. For example, total cost for a planning
horizon increases $180 (from TC = $312,580 to 312,760) when O increases from
$60 to 120. This is purely due to the $60 increase in ordering cost per time ($60
increase in ordering cost X 3 purchases = $180 increase in total cost). However,
when the ordering cost increases from $180 to 360, the number of purchases
decreases from three times to two times. This is because discount savings from
large-sized orders can be obtained and holding cost becomes relatively cheaper
when ordering cost increases significantly.

+ An increase in unit holding cost per period (H) causes increases in total holding
cost. This may lead to an increase in number of orders in order to compensate the
holding cost, and an increase in total ordering cost and total cost for a planning
horizon are resulted. When 4 = 0.01 and 0.05, only two purchases are made
(@, = 3,000 and @5 = 5,008). When H increases to 0.1, three purchases are
made (€Q; = 2,000, @, = 3,000, @;=3,008), and the same replenishment
decisions are made for H = 0.15. When H = 0.3, three purchases are made at
the same periods as when H = 0.1 and 0.15, but the purchase quantities are
different (@7 = 1,370, @, = 3,519, Q; = 3,119). A significant decrease in order
quantities is seen from @; = 2,000 for H=0.1 and 0.15 to @, = 1,370 for
H=0.3. This is because the holding cost keeps increasing and the discount
savings from large-sized orders are not enough to compensate the holding cost.
To summarize, an optimal solution is obtained with the consideration of the
interactions among discounted purchase price, holding cost and ordering cost.

+ The breakeven points for the changes in O and H are further obtained as in
Table VII. When O = 301.6, the fab can make either two purchases (@; = 3,000,
Q5 = 5,008) or three purchases (¢; = 2,000, @, = 3,000, €, = 3,008), and the
total cost remain the same with $313,305. When H = 0.07412, either two
purchases or three purchases can be made, and the replenishment decisions for
two (three) purchases are exactly the same as the two (three) purchases when
O = 301.6.



S5 =20 (op} ig g
e -~
TR A1
L wg 5550
o 9 m R RS)
_ e ] pum Lol
m = S a5
g8 55
[av] = M 8
&0 W m 3
e S
= .8
Q
OST'TIE 007 00028 0°0°S6S'T 00 ‘6IT'E 0°0°08L°C 800°G‘T0SG 00 ‘09T 0°0°0F0Z 0°0°06£C 000€‘T0 100
O9FETIE 0°0FEc 00028 0°0°S6S'T 00 ‘6IT'E 0°0°08L°C 800°G‘T0SG 00 ‘09T 0°0°070Z 0°0°06£C 000€‘T0 SO0
09221 0°0%¢2 00028 0°0°668'T 800°C‘TIIT  0°0 ‘L. 0 °0°085C 000'€T0€9 0°0‘0FOT 0°0°06ET 0002°T0  T0
SOFEIE  0°0Fec 00028 0°0°S6S'T 800°CTIIT  0°0 2L 0°0°088Z 000€‘T0£9 0°0°0F0T 0°0°06ET 0002 ‘T0 ST
SIZSIe 00982 0°0°0.5 0°0°668'T  BITCT0O 0°0T99 0°068FT 616 T0 0 0°0IF 0 0092 OLTT0 €0 H
9¢FZIE 00T 00028 0°0°S6S'T 800°CT'TIT  0°0 ‘2L  0°0 ‘0887 000€‘T0E9 0°0°0F0T 0°0°06ET 0002‘T0 &I
0852I¢  0°0%Sc 00028 0°0°S68'T 800°CTIIT  0°0 2L 0 °0°088Z 000'€T0S9 0°0°0FOT 0°006ET 0002°T0 09
09221€  0°0Fec 00028 0°0°S6S'T 800°C‘TTIT  0°0 ‘2L 0°0 ‘0887 000°€‘T0E9 0°0°0F0T 0°0°06ET 0002 ‘T0 02T
0F62IE  0°0F8c 00028 0°0°G6S'T 800°C‘T'TIT  0°0 L.  0°0 ‘0887 000°C T0E9 0°0°0FOT 0°0°06ET 0002 ‘T0 08T
TCFEIE 0°0FPee 00028 0°0°S6S'T 00 6IT'E 0°0°08L°C 800°GT0SS 00 ‘09T 0°0°0F0Z 0°0°06£C 000€‘T0  09¢ 0
0L 017 0Ty, 6 677 6y Ly S7 8 Ly Loy L 975 97 9 SPy Sz G Yy Y7 T €M Sz Yy o ey ey 1M Tz Ty son[eA  SIOJOWERIR
@oL OOz epCzey DSz OYZYX 07X 07X 07X OZX Oz 'Oz X sonrep d




9CvTIe 00952 0008 0°0G6ST 00 ‘6IT°€ 00 082°¢ 800G ‘T 0SS 0°0°069T 0°0°0¥0Z 000652 000 ‘T°0 gIVL0°0
92veIE 0072 0°0°0.8 0°0‘G6ST 800°C ‘T TIT 0°0‘2LL 000567 000€ ‘T029 0°0‘0VO'T 0°0°06ET 0007 T0 ZIFL00 H
S0S'eIE 0095z 000, 0°0G6ST 800€ T TIT  0°0‘GLL 000887 000°€‘T09 0°0°0VOT 0°006€T 000Z T0 9710
SOSETE 0072 0005 0°0‘GS'T 0°06TTC 0°0 ‘082 800G ‘T ‘0SS 0°0°0€9T 0°0 ‘0702 000687 000 ‘T0 9T0E 0]
@oL Oz ey Sz Ot 0% OUX O Tzx Oz ex WOz 'Oz sdSuey)  spUWEIR]
. o0
53
20
gy
g
e
252
253
— —_ e O
PN ac s
b~ O s U ©
ol w0 &0




5. Conclusion

This paper proposes a mixed 0-1 integer programming model to determine the
replenishment quantity of colour filters for multi-periods. The case study demonstrates
the practicality of the proposed model in minimizing the total cost. The analysis
provided in this study is very useful for managers in designing a replenishment policy
for TFT-LCD manufacturers to deal with colour filters which have the characteristics
of large-size, price quantity discount and batch-sized orders. For future research, we
can consider a case with multiple suppliers and different discount schedules for the
suppliers. A model that takes into account stochastic demand and lead time and
different priority of orders can also be established.
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